Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(*E*)-4-Chloro-*N*-[(*E*)-2-methyl-3-phenyl-allylidene]aniline

Aliakbar D. Khalaji^a and Jim Simpson^{b*}

^aDepartment of Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran, and ^bDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand Correspondence e-mail: jsimpson@alkali.otago.ac.nz

Received 13 January 2009; accepted 15 January 2009

Key indicators: single-crystal X-ray study; T = 89 K; mean σ (C–C) = 0.002 Å; R factor = 0.039; wR factor = 0.109; data-to-parameter ratio = 24.9.

The title Schiff base compound, $C_{16}H_{14}CIN$, adopts *E* configurations with respect to both the C—C and C—N bonds. The dihedral angle between the two aromatic rings is 53.27 (4)°, while the plane through the C—C—C—N system is inclined at 9.06 (8)° to the benzene ring and 44.92 (5)° to the chlorobenzene ring. In the crystal structure, weak C—H···Cl and C—H···N hydrogen bonds stack the molecules down the *a* axis.

Related literature

For background to the use of Schiff bases as ligands see: Khalaji *et al.* (2008*a,b*); and for their bio-activity, see: Karthikeyan *et al.* (2006); Xiong *et al.* (2008); Sriram *et al.* (2006). For related structures, see: Khalaji *et al.* (2007); Khalaji & Harrison (2008); Khalaji *et al.* (2008*c*). For reference structural data, see: Allen *et al.* (1987).

Experimental

Crystal data

 $C_{16}H_{14}ClN$ $M_r = 255.73$ Orthorhombic, $P2_12_12_1$ a = 7.2486 (10) Å b = 11.6637 (17) Å c = 15.598 (2) Å

Data collection

Bruker APEXII CCD area-detector diffractometer

 $V = 1318.7 (3) \text{ Å}^{3}$ Z = 4 Mo K\alpha radiation $\mu = 0.27 \text{ mm}^{-1}$ T = 89 (2) K 0.36 \times 0.24 \times 0.03 mm

Absorption correction: multi-scan (SADABS; Bruker, 2006) $T_{min} = 0.841, T_{max} = 0.992$ 21077 measured reflections 4077 independent reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.039$	$\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.109$	$\Delta \rho_{\rm min} = -0.36 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.06	Absolute structure: Flack (1983),
4077 reflections	1742 Friedel pairs
164 parameters	Flack parameter: 0.01 (6)
H-atom parameters constrained	
H-atom parameters constrained	Flack parameter: 0.01 (6)

3517 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.058$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C7-H7\cdots N1^{i}$ C13-H13···Cl1 ⁱⁱ	0.95 0.95	2.67 2.92	3.524 (2) 3.7311 (17)	150 144
	3 .	1 an 1	2 -	

Symmetry codes: (i) $-x + \frac{3}{2}$, -y + 1, $z - \frac{1}{2}$; (ii) $x + \frac{1}{2}$, $-y + \frac{3}{2}$, -z + 2.

Data collection: *APEX2* (Bruker, 2006); cell refinement: *APEX2* and *SAINT* (Bruker, 2006); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008) and *TITAN* (Hunter & Simpson, 1999); molecular graphics: *SHELXTL* (Sheldrick, 2008) and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *SHELXL97*, *enCIFer* (Allen *et al.*, 2004), *PLATON* (Spek, 2003) and *publCIF* (Westrip, 2009).

We thank the University of Otago for purchase of the diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2147).

References

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.
- Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). *Bioorg. Med. Chem.* 14, 7482–7489.
- Khalaji, A. D., Amirnasr, M. & Harrison, W. T. A. (2008a). Anal. Sci. 24, x89– x90.
- Khalaji, A. D. & Harrison, W. T. A. (2008). Anal. Sci. 24, x3-x4.
- Khalaji, A. D., Slawin, A. M. Z. & Woollins, J. D. (2007). Acta Cryst. E63, 04257.
- Khalaji, A. D., Welter, R., Amirnasr, M. & Barry, A. H. (2008b). Anal. Sci. 24, x137-x138.
- Khalaji, A. D., Welter, R., Amirnasr, M. & Barry, A. H. (2008c). Anal. Sci. 24, x139-x140.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Sriram, D., Yogeeswari, P., Sirisha, N. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127–2129.
- Westrip, S. P. (2009). publCIF. In preparation.
- Xiong, Y.-Z., Chen, F.-E., Balzarini, J., Clercq, E. D. & Pannecouque, C. (2008). Eur. J. Med. Chem. 43, 1230–1236.

supplementary materials

Acta Cryst. (2009). E65, o362 [doi:10.1107/S1600536809001871]

(E)-4-Chloro-N-[(E)-2-methyl-3-phenylallylidene]aniline

A. D. Khalaji and J. Simpson

Comment

Schiff-bases are well known chelating ligands in coordination chemistry (Khalaji *et al.*, 2008*a*,b), and exhibit a wide range of biological activities (Karthikeyan *et al.*, 2006) including anti-HIV activity (Xiong *et al.*, 2008; Sriram *et al.*, 2006). As a continuation of our work on the synthesis and structural characterization of Schiff-base compounds (Khalaji *et al.*, 2007; Khalaji & Harrison, 2008; Khalaji *et al.*, 2008*c*), we report here the structure of the title compound, C₁₆H₁₄NCl, (I), Fig 1.

The title Schiff-base compound, $C_{16}H_{14}NCl$, adopts *E* configurations with respect to both the C2=C4 and C1=N1 bonds. Bond lengths in the molecule are normal (Allen, *et al.*, 1987) and similar to those found in related compounds (Khalaji *et al.*, 2007; Khalaji & Harrison, 2008; Khalaji *et al.*, 2008*c*). The dihedral angle between the two aromatic rings is 53.27 (4)° while the plane through the C2=C4–C1=N1 system is inclined at 9.06 (8)° to the C5…C10 ring and 44.92 (5)° to the C11…C16 ring.

In the crystal structure, weak C13—H13…Cl1 and C7—H7…N1 hydrogen bonds stack the molecules down the a axis.

Experimental

The title compound was prepared in 76% yield from 4-chloroaniline and α -methylcinnamaldehyde as reported elsewhere (Khalaji *et al.* 2007) and recrystallized from methanol.

Refinement

The H atom bound to N1 was located in a difference electron density map and refined freely with an isotropic displacement parameter. All other H-atoms were refined using a riding model with d(C-H) = 0.95 Å, $U_{iso} = 1.2U_{eq}$ (C) for aromatic and 0.98 Å, $U_{iso} = 1.5U_{eq}$ (C) for CH₃ H atoms.

Figures

Fig. 1. The structure of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level.

Fig. 2. Crystal packing of (I) viewed down the *a* axis with hydrogen bonds drawn as dashed lines. H atoms not involved in hydrogen bonding have been omitted.

(E)-4-Chloro-N-[(E)-2-methyl-3-phenylallylidene]aniline

 $F_{000} = 536$

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 2.6 - 28.8^{\circ}$

 $\mu = 0.27 \text{ mm}^{-1}$

T = 89 (2) K

 $D_{\rm x} = 1.288 \text{ Mg m}^{-3}$ Mo *K* α radiation

Cell parameters from 5396 reflections

Rectangular plate, pale yellow

 $0.36 \times 0.24 \times 0.03 \text{ mm}$

Crystal data

C₁₆H₁₄ClN $M_r = 255.73$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 7.2486 (10) Å b = 11.6637 (17) Å c = 15.598 (2) Å V = 1318.7 (3) Å³ Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer	4077 independent reflections
Radiation source: fine-focus sealed tube	3517 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.058$
T = 89(2) K	$\theta_{\text{max}} = 30.7^{\circ}$
ω scans	$\theta_{\min} = 3.1^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2006)	$h = -10 \rightarrow 10$
$T_{\min} = 0.841, \ T_{\max} = 0.992$	$k = -16 \rightarrow 16$
21077 measured reflections	$l = -21 \rightarrow 22$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.039$	$w = 1/[\sigma^2(F_o^2) + (0.0649P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.109$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.06	$\Delta \rho_{max} = 0.30 \text{ e} \text{ Å}^{-3}$
4077 reflections	$\Delta \rho_{min} = -0.36 \text{ e } \text{\AA}^{-3}$
164 parameters	Extinction correction: none
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 1742 Friedel pairs
~	

Secondary atom site location: difference Fourier map Flack parameter: 0.01 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	
N1	0.5152 (2)	0.52967 (12)	0.68870 (9)	0.0202 (3)	
C1	0.4972 (2)	0.61272 (13)	0.63497 (9)	0.0183 (3)	
H1	0.4550	0.6848	0.6553	0.022*	
C2	0.5394 (2)	0.60026 (13)	0.54384 (9)	0.0172 (3)	
C3	0.6040 (3)	0.48397 (13)	0.51348 (10)	0.0224 (3)	
H3A	0.5303	0.4601	0.4639	0.034*	
H3B	0.5892	0.4280	0.5598	0.034*	
H3C	0.7343	0.4884	0.4970	0.034*	
C4	0.5161 (2)	0.69557 (13)	0.49535 (10)	0.0178 (3)	
H4	0.4725	0.7602	0.5264	0.021*	
C5	0.5458 (2)	0.71712 (13)	0.40389 (10)	0.0166 (3)	
C6	0.6332 (3)	0.64156 (14)	0.34605 (10)	0.0227 (3)	
Н6	0.6771	0.5695	0.3659	0.027*	
C7	0.6560 (2)	0.67119 (14)	0.26031 (10)	0.0228 (3)	
H7	0.7151	0.6192	0.2223	0.027*	
C8	0.5931 (2)	0.77606 (14)	0.22974 (10)	0.0228 (3)	
H8	0.6072	0.7953	0.1709	0.027*	
С9	0.5089 (3)	0.85283 (15)	0.28615 (11)	0.0243 (4)	
Н9	0.4672	0.9252	0.2660	0.029*	
C10	0.4861 (2)	0.82324 (14)	0.37165 (10)	0.0205 (3)	
H10	0.4286	0.8762	0.4094	0.025*	
C11	0.4819 (2)	0.55276 (13)	0.77639 (10)	0.0182 (3)	
C12	0.5526 (2)	0.64996 (13)	0.81773 (10)	0.0203 (3)	
H12	0.6233	0.7040	0.7862	0.024*	
C13	0.5200 (2)	0.66792 (13)	0.90454 (10)	0.0207 (3)	
H13	0.5671	0.7342	0.9323	0.025*	
C14	0.4183 (2)	0.58807 (13)	0.94995 (10)	0.0193 (3)	
C11	0.38085 (6)	0.60910 (4)	1.05938 (2)	0.02595 (11)	
C15	0.3494 (2)	0.48964 (13)	0.91081 (11)	0.0206 (3)	
H15	0.2800	0.4354	0.9428	0.025*	
C16	0.3841 (2)	0.47222 (13)	0.82400 (10)	0.0199 (3)	
H16	0.3404	0.4045	0.7969	0.024*	
	^ 7				
Atomic displacement	Atomic displacement parameters $(Å^2)$				

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

 U^{11} U^{22} U^{33} U^{12} U^{13} U^{23} N10.0204 (7)0.0212 (6)0.0190 (6)0.0000 (5)0.0007 (5)0.0002 (5)

supplementary materials

C1	0.0174 (7)	0.0186 (6)	0.0189 (7)	0.0011 (6)	0.0001 (6)	-0.0018 (6)
C2	0.0162 (7)	0.0171 (6)	0.0182 (7)	0.0014 (6)	-0.0009 (5)	-0.0021 (6)
C3	0.0278 (9)	0.0173 (6)	0.0222 (8)	0.0029 (7)	0.0032 (7)	-0.0004 (6)
C4	0.0186 (8)	0.0163 (7)	0.0185 (7)	0.0000 (6)	0.0011 (6)	-0.0038 (5)
C5	0.0145 (7)	0.0161 (6)	0.0191 (7)	-0.0025 (6)	0.0003 (6)	-0.0018 (5)
C6	0.0291 (9)	0.0164 (6)	0.0225 (8)	0.0000 (7)	0.0035 (7)	-0.0014 (5)
C7	0.0280 (9)	0.0206 (7)	0.0199 (7)	-0.0031 (7)	0.0053 (6)	-0.0036 (6)
C8	0.0244 (9)	0.0264 (7)	0.0175 (7)	-0.0045 (7)	-0.0010 (6)	0.0008 (6)
C9	0.0257 (9)	0.0238 (7)	0.0233 (8)	0.0035 (7)	0.0006 (7)	0.0054 (6)
C10	0.0204 (8)	0.0198 (7)	0.0213 (7)	0.0028 (6)	0.0019 (6)	0.0004 (6)
C11	0.0174 (7)	0.0190 (7)	0.0183 (7)	0.0034 (6)	-0.0007 (6)	0.0014 (6)
C12	0.0209 (8)	0.0183 (6)	0.0218 (7)	-0.0003 (6)	-0.0028 (6)	0.0042 (6)
C13	0.0233 (8)	0.0174 (7)	0.0214 (7)	-0.0008 (6)	-0.0039 (6)	-0.0012 (6)
C14	0.0181 (7)	0.0217 (7)	0.0180 (7)	0.0051 (6)	-0.0004 (6)	0.0021 (6)
Cl1	0.0302 (2)	0.02978 (19)	0.01791 (17)	0.00604 (18)	0.00123 (15)	-0.00069 (15)
C15	0.0197 (8)	0.0196 (7)	0.0225 (7)	0.0009 (6)	0.0016 (6)	0.0030 (6)
C16	0.0199 (8)	0.0172 (6)	0.0228 (7)	0.0000 (6)	-0.0005 (6)	-0.0006 (6)

Geometric parameters (Å, °)

N1—C1	1.287 (2)	C8—C9	1.396 (2)
N1—C11	1.415 (2)	С8—Н8	0.9500
C1—C2	1.4612 (19)	C9—C10	1.387 (2)
C1—H1	0.9500	С9—Н9	0.9500
C2—C4	1.355 (2)	C10—H10	0.9500
C2—C3	1.511 (2)	C11—C16	1.392 (2)
С3—НЗА	0.9800	C11—C12	1.401 (2)
С3—Н3В	0.9800	C12—C13	1.390 (2)
С3—НЗС	0.9800	C12—H12	0.9500
C4—C5	1.464 (2)	C13—C14	1.383 (2)
C4—H4	0.9500	С13—Н13	0.9500
C5—C10	1.404 (2)	C14—C15	1.393 (2)
C5—C6	1.412 (2)	C14—Cl1	1.7456 (16)
C6—C7	1.391 (2)	C15—C16	1.392 (2)
С6—Н6	0.9500	C15—H15	0.9500
С7—С8	1.390 (2)	С16—Н16	0.9500
С7—Н7	0.9500		
C1—N1—C11	117.96 (14)	С7—С8—Н8	120.3
N1—C1—C2	122.50 (14)	С9—С8—Н8	120.3
N1—C1—H1	118.8	C10—C9—C8	119.89 (15)
C2—C1—H1	118.8	С10—С9—Н9	120.1
C4—C2—C1	115.80 (14)	С8—С9—Н9	120.1
C4—C2—C3	126.88 (13)	C9—C10—C5	121.79 (15)
C1—C2—C3	117.32 (13)	С9—С10—Н10	119.1
С2—С3—НЗА	109.5	С5—С10—Н10	119.1
С2—С3—Н3В	109.5	C16-C11-C12	119.14 (15)
НЗА—СЗ—НЗВ	109.5	C16—C11—N1	118.32 (14)
С2—С3—Н3С	109.5	C12—C11—N1	122.44 (15)
НЗА—СЗ—НЗС	109.5	C13—C12—C11	120.52 (15)

НЗВ—СЗ—НЗС	109.5	С13—С12—Н12	119.7
C2—C4—C5	131.77 (14)	C11—C12—H12	119.7
C2—C4—H4	114.1	C14—C13—C12	119.20 (15)
C5—C4—H4	114.1	C14—C13—H13	120.4
C10—C5—C6	117.38 (14)	С12—С13—Н13	120.4
C10—C5—C4	117.05 (14)	C13—C14—C15	121.45 (15)
C6—C5—C4	125.55 (14)	C13—C14—Cl1	119.28 (12)
C7—C6—C5	120.84 (15)	C15—C14—Cl1	119.25 (12)
С7—С6—Н6	119.6	C16-C15-C14	118.82 (15)
С5—С6—Н6	119.6	С16—С15—Н15	120.6
C8—C7—C6	120.63 (15)	C14—C15—H15	120.6
С8—С7—Н7	119.7	C11—C16—C15	120.83 (14)
С6—С7—Н7	119.7	С11—С16—Н16	119.6
С7—С8—С9	119.46 (15)	С15—С16—Н16	119.6

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!\!- \!$	
C7—H7…N1 ⁱ	0.95	2.67	3.524 (2)	150	
C13—H13···Cl1 ⁱⁱ	0.95	2.92	3.7311 (17)	144	
Symmetry codes: (i) $-x+3/2$, $-y+1$, $z-1/2$; (ii) $x+1/2$, $-y+3/2$, $-z+2$.					

Fig. 2